Электротехника: Основы


Закон Ома для полной цепи (DC)

Рассмотрим Закон Ома (Ohm's law) для полной электрической цепи постоянного тока. Здесь нас прежде всего интересует его практическое отношение к постоянному току (direct current). Различают две формулировки Закона Ома, одна для участка цепи, а другая для полной цепи. В последней учитывается источник тока, точнее его внутреннее сопротивление.

Простейшая электрическая цепь постоянного тока состоит из источника тока и одной единственной резистивной нагрузки, а попросту из — активного сопротивления.

Закон Ома для полной цепи

Закон Ома — закон пропорциональности

Формулировка Закона Ома для полной цепи и для участка цепи — это утверждение пропорциональности. Устанавливается достаточна простая алгебраическая связь между величинами силы тока, суммы сопротивлений (r+R) и ЭДС источника тока.

Сила тока в электрической цепи, прямо пропорциональна ЭДС источника и обратно пропорциональна сумме внутреннего сопротивления этого источника и общего сопротивления цепи.

Наиболее понятное и простое применение Закона Ома в такой формулировке — это электрическая цепь с одним источником тока в ветви (контуре). Кроме Закона Ома, для расчёта электрических цепей, необходимо знать правила Кирхгофа, а также иметь базовые представления об элементах цепей, таких как узлы, ветви, контуры, двухполюсники и т. п. Но ограничившись только Законом Ома для полной цепи можно сделать несколько важных выводов.

Потери на внутреннем сопротивлении источника ЭДС

Самый простой пример иллюстрирующий влияние внутреннего сопротивления источника тока — это гальванические элементы (батареи) и аккумуляторы. Способность источника тока выдавать большое значение силы тока напрямую зависит от его внутреннего сопротивления. Чем оно больше, тем меньший ток способен выдать источник ЭДС.

Допустим у нас имеется аккумуляторная батарея на 12 Вольт (В), а в качестве нагрузки мы применяем лампу накаливания мощностью 24 Ватт (Вт). Как узнать сопротивление нагрузки при устоявшемся режиме работы, то есть когда лампа горит в полный накал? Это сделать достаточно просто. Мощность (24 Вт) делим на напряжение (12 В), в итоге мы получаем расчётное значение рабочего тока в 2 Ампер (А).

Чтобы вычислить сопротивление нагрузки, нужно воспользоваться Законом Ома для участка цепи. В нашем случае падение напряжения на нагрузке, то есть лампе накаливания должно быть 12 В, а рабочий ток для выхода на мощность в 24 Вт будет 2 А. Применяем закон пропорциональности и находим сопротивление нагрузки.

Закон Ома. Применение пропорциональности

В итоге мы получаем расчётное рабочее сопротивление нагрузки R равное 6 Ом (12 В/2 А).

Теперь же вернёмся к нашему источнику ЭДС с его внутренним сопротивлением. Как оно будет влиять на ток в цепи? Допустим, что мы измерили напряжение на клеммах аккумулятора и оно оказалось равным 12,5 Вольт, затем подключили нашу нагрузку — лампочку накаливания 24 Ватт, на номинальное напряжение в 12 Вольт. Вроде бы всё должно работать, но оказывается, что лампа светит тускло, в половину накала. В чём же может быть причина? Вот тут как раз таки можно и нужно применять Закон Ома для полной цепи. Необходимо учитывать внутреннее сопротивление источника. Так как визуально лампа светит тускло, значит не выходит на свою норму в потребления 24 Вт, а значит напряжение и ток на ней недостаточны. Казалось бы, подключили к аккумулятору у которого на выходе 12,5 Вольт, но что-то тут не так. Что именно?

Нужно провести измерение падения напряжения непосредственно на лампе, тогда окажется, что оно совсем не 12 Вольт, а гораздо меньше, допустим 6 Вольт. Условно предположим, что сопротивление лампы в 6 Ом стабильно и не зависит от нагрева. Тогда мы можем вновь воспользоваться Законом Ома для участка цепи, чтобы найти значение тока. В нашем случае это достаточно просто сделать. Необходимо падение напряжения на лампе в 6 Вольт, разделить на её сопротивление в 6 Ом. В результате мы получим значение тока в цепи равное 1 Ампер. Вот оно что! Для того, чтобы лампа горела как положено и давала все свои 24 Ватт мощности, нужен ток в 2 А, а у нас ровно половина — 1 А. Можно сразу сказать, что на лампе выделяется мощность всего в 6 Ватт, что явно недостаточно.

Почему же при ЭДС источника — аккумулятора в 12,5 Вольт происходит такое, казалось бы несоответствие? Сумма падений напряжений в контуре, а у нас как раз таки один единственный контур цепи, всегда равно ЭДС источника. Отсюда делаем вывод, что у нас куда-то делось 6,5 Вольт (12,5-6). А делись они вот куда. Внутреннее сопротивление источника тока можно выделить наружу только в схеме, а на практике оно как бы глубоко запрятано в конструкции источника. Разумеется, что разобрав источник на части, мы не обнаружим там никакого внутреннего сопротивления. Оно существует умозрительно, на схемах, для удобства, а в реальности это характеристика сторонних сил, которые создают ту самую ЭДС.

В итоге, у нас выходит, по вышеприведённому примеру, что сам источник тока съедает мощность на себя, да ещё к тому же она больше, чем полезная нагрузка — лампочка. При токе в 1 А, и при падении напряжения в 6,5 В на внутреннем сопротивлении мы имеем 6,5 Вт бесполезных потерь на источнике тока!!! Выдаёт на нагрузку 6 Вт, а сам кушает чуть больше — 6,5 Вт. Эффективность заведомо меньше 50%. Вот вам и применение Закона Ома для полной цепи.

Давайте попробуем решить обратную задачу. Какое внутреннее сопротивление источника тока с ЭДС равной 12,5 Вольт должно быть, чтобы падение напряжения на лампе в 24 Вт было равным 12 В?

Исходя из задачи, можно сразу же вычислить падение напряжения на внутреннем сопротивлении. Оно должно быть в нашем случае равным всего 0,5 В. Но для того, чтобы пользуясь Законом Ома вычислить значение внутреннего сопротивления, нам нужно знать силу тока. Учитывая, что мы хотим получить с нагрузки 24 Вт мощности, то для этого нам необходим ток в 2 Ампер. Для расчёта можно смело брать эту величину. Теперь узнать внутреннее сопротивление источника достаточно просто. Оно будет равно 0,5 В делённые на ток в 2 А, то есть 0,25 Ом. Эта величина значительно меньше той, которая была в примере, когда лампа горела тускло, всего на 6 Вт мощности.

При внутреннем сопротивлении в 0,25 Ом и при нагрузке в 6 Ом мы получим достаточно эффективное использование источника тока. На нагрузке у нас будет выделятся мощность в 24 Вт, а потери источника на внутреннем сопротивлении составят всего на всего 1 Вт (0,5Х2). Соотношение меньше чем 1 к 10. Однако, если мы с вами к источнику с таким малым внутренним сопротивлением подключим нагрузку в 0,25 Ом, то есть внутреннее сопротивление и сопротивление нагрузки равны, тогда ток в цепи подскочит до значения 25 А (12,5/0,5). На нагрузке будет выделятся мощность равная 156,25 Вт и точно такая же будет расходоваться в самом источнике.

Выбор источника тока по мощности нагрузки

Правильное понимание Закона Ома для полной цепи позволяет правильно рассчитать и выбрать источник тока по нагрузке, а также позволяет своевременно выявить дефекты источников тока. Тот источник тока, который не пригоден для низкоомной нагрузки, потому как его внутреннее сопротивление в больше или равно сопротивлению нагрузки, будет вполне пригоден в эксплуатации для питания электрической цепи с нагрузкой в 10 раз большим сопротивлением, чем его собственное.

Чем большую мощность нужно получить на нагрузке при малом значении ЭДС, тем меньше должно быть внутреннее сопротивление источника. Поэтому самыми лучшими источниками постоянного тока (DC) в настоящее время остаются химические аккумуляторы, хотя вполне возможно, что их могут превзойти в этом полупроводниковые источники тока — солнечные батареи.

Оптимальным считается, когда падение напряжения на внутреннем сопротивлении, более чем в 10 раз меньше чем падение напряжения на полезной нагрузке. Если говорить языком пропорциональности, то это означает, что зная сопротивление нагрузки или её мощность, нужно выбирать источник тока, где его внутреннее сопротивление (импеданс) будет более чем в 10 раз меньшим.

Дата: 18.05.2015

© Valentin Grigoryev (Валентин Григорьев)


Тег статьи: Закон Ома

Все теги раздела Электротехника:
Электричество Закон Ома Электрический ток Электробезопасность Устройства Биоэлектричество Характеристики Физические величины Электролиз Электрические схемы Асинхронные двигатели